A Connectionist Model for Part of Speech Tagging
نویسندگان
چکیده
AutoTutor is a fully automated tutoring system that attempts to comprehend learner contributions and formulate appropriate dialogue moves. This paper reports the mechanisms and performance of one of AutoTutor’s language modules, the word tagging module. AutoTutor’s word tagging module determines the part of speech tag for every word in the learner’s contributions. It uses a two part procedure: it first consults a lexicon to identify the set of possible tags for each word, then it uses a neural network to select a single tag for each word. Performance assessments were made on a corpus of oral tutorial dialogue, as opposed to well-formed printed text. The lexicon provided the correct tag, as one member of a set, for 97% of the words and 91.6% of the neural network’s first-choice tags matched assignments by humans.
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملبرچسبگذاری ادات سخن زبان فارسی با استفاده از مدل شبکۀ فازی
Part of speech tagging (POS tagging) is an ongoing research in natural language processing (NLP) applications. The process of classifying words into their parts of speech and labeling them accordingly is known as part-of-speech tagging, POS-tagging, or simply tagging. Parts of speech are also known as word classes or lexical categories. The purpose of POS tagging is determining the grammatical ...
متن کاملسیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی
Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...
متن کاملComputational modeling of dynamic decision making using connectionist networks
In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...
متن کاملUsing Natural Language Processing to Improve Document Categorization with Associative Networks
Associative networks are a connectionist language model with the ability to handle large sets of documents. In this research we investigated the use of natural language processing techniques (part-of-speech tagging and parsing) in combination with Associative Networks for document categorization and compare the results to a TF-IDF baseline. By filtering out unwanted observations and preselectin...
متن کامل